
Self-Supervised Audio-Visual Representation Learning with Relaxed Cross-Modal
Synchronicity

(Supplementary Material)

Pritam Sarkar1, 2 Ali Etemad1

1 Queen’s University, Canada 2 Vector Institute
{pritam.sarkar, ali.etemad}@queensu.ca

https://pritamqu.github.io/CrissCross

The organization of the supplementary material is as fol-
lows:
• Appendix A: Pseudocode;
• Appendix B: Qualitative Analysis;
• Appendix C: Datasets;
• Appendix D: Data Augmentations;
• Appendix E: Evaluation Protocols;
• Appendix G: Hyperparameters;
• Appendix F: Architectures;
• Appendix H: Limitations;
• Appendix I: Broader Impact.

A Pseudocode
We present the pseudocode of our proposed CrissCross
framework in Algorithm 1.

B Qualitative Analysis
To perform a qualitative analysis of the learned representa-
tions in an unsupervised setup, we present the nearest neigh-
borhoods of video-to-video and audio-to-audio retrieval in
Figures S1 and S2. In this experiment, we use Kinetics400
(Kay et al. 2017) to pretrain CrissCross. Next, we use the
features extracted from randomly selected samples of the
validation split to query the training features. We find that
in most of the cases CrissCross performs fairly well, we no-
tice very few instances of wrong retrieval, which generally
occur when the visual scenes or sound events are very sim-
ilar. For instance, ‘playing piano’ and ‘playing organ’ for
video-to-video retrieval and ‘playing keyboard’ and ‘play-
ing xylophone’ for audio-to-audio retrieval.

C Datasets
C.1 Pretraining Datasets
We use 3 datasets of different sizes for pretraining, namely,
Kinetics-Sound (Arandjelovic and Zisserman 2017), Kinet-
ics400 (Kay et al. 2017), and AudioSet (Gemmeke et al.
2017). Kinetics-Sound is a small-scale action recognition
dataset, which has a total of 22K video clips, distributed
over 32 action classes. Kinetics400 is a medium-scale hu-
man action recognition dataset, originally collected from

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1: CrissCross pseudocode (PyTorch style).
fv: visual encoder (backbone+projection mlp)
fa: audio encoder (backbone+projection mlp)
hv: visual predictor head (prediction mlp)
ha: audio predictor head (prediction mlp)
D: loss function, following Eqn. 1

def forward(v1, v2, a1, a2):
"""
v1,V2: minibatch of augmented visual samples
a1,a2: minibatch of augmented audio samples
"""

visual
zv1, zv2 = fv(v1), fv(v2) # visual embeddings
pv1, pv2 = hv(zv1), hv(zv2) # predictor output

audio
za1, za2 = fa(a1), fa(a2) # audio embeddings
pa1, pa2 = ha(za1), ha(za2) # predictor output

loss calculation

intra-modal loss, following Eqn. 2
L_intra = D(pv1, zv2)/2 + D(pv2, zv1)/2 + \

D(pa1, za2)/2 + D(pa2, za1)/2

synchronous cross-modal loss, following Eqn. 3
L_sync = (D(pv1, za1)/2 + D(pa1, zv1)/2 + Lv2a2 +\

D(pv2, za2)/2 + D(pa2, zv2)/2)/2

asynchronous cross-modal loss, following Eqn. 4
L_async = (D(pv1, za2)/2 + D(pa2, zv1)/2 +\

D(pa1, zv2)/2 + D(pv2, za1)/2)/2

total loss, following Eqn. 5
L_CrissCross = (L_async + L_sync + L_intra)/3

return L_CrissCross

YouTube. It has a total of 240K training samples and 400
action classes. Please note that Kinetics-Sound is a subset of
Kinetics400, and consists of action classes which are promi-
nently manifested audibly and visually (Arandjelovic and
Zisserman 2017). Lastly, AudioSet (Gemmeke et al. 2017)
is a large-scale video dataset of audio events consisting of
a total of 1.8M audio-video segments originally obtained
from YouTube spread over 632 audio classes. Please note
that none of the provided labels are used in self-supervised
pretraining.

C.2 Downstream Datasets
Following the standard practices of prior works (Morgado,
Vasconcelos, and Misra 2021; Morgado, Misra, and Vas-
concelos 2021; Alayrac et al. 2020; Alwassel et al. 2020;

Query Neighborhoods

Figure S1: We present a few randomly selected samples of
video-to-video retrieval. Here, the frames with black bor-
ders represent the query, and the next 5 frames represent the
top-5 neighborhoods. The correct retrievals are marked with
green, while the wrong ones are marked with red.

Asano et al. 2020; Korbar, Tran, and Torresani 2018), we
evaluate our self-supervised methods on two types of down-
stream tasks: (i) action recognition based on visual repre-
sentations and (ii) sound classification based on audio repre-
sentations. To perform action recognition, we use two pop-
ular benchmarks, i.e., UCF101 (Soomro, Zamir, and Shah
2012) and HMDB51 (Kuehne et al. 2011). UCF101 con-
sists of a total of 13K clips distributed among 101 action
classes, while HMDB contains nearly 7K video clips dis-
tributed over 51 action categories. To perform sound clas-
sification, we use two popular benchmarks ESC50 (Piczak
2015) and DCASE2014 (Stowell et al. 2015). ESC50 is a
collection of 2K audio events comprised of 50 classes and
DCASE2014 is an audio event dataset of 100 recordings
spread over 10 categories.

Query Neighborhoods

Figure S2: We present a few randomly selected samples of
audio-to-audio retrieval. Here, the frames with black bor-
ders represent the query, and the next 5 frames represent the
top-5 neighborhoods. The correct retrievals are marked with
green, while the wrong ones are marked with red.

D Data Augmentation
Here we present the details of the augmentation parameters
for both visual and audio modalities.

D.1 Visual Augmentations

The parameters for visual augmentations are presented in
Table S1. Some of the parameters are chosen from the liter-
ature, while the rest are found through empirical search. We
set the parameters of Multi-Scale Crop, Gaussian Blur, and
Gray Scale as suggested in (Chen et al. 2020), and the pa-
rameters for Color Jitter are taken from (Morgado, Vascon-
celos, and Misra 2021). We use TorchVision (Paszke et al.
2019) for all the implementations of visual augmentations,
except Cutout where we use the implementation available

Augmentation Parameters

Multi Scale Crop min area = 0.08

Horizontal Flip p = 0.5

Color Jitter

brightness = 0.4
contrast = 0.4
saturation = 0.4
hue = 0.2

Gray Scale p = 0.2

Gaussian Blur p = 0.5

Cutout max size = 20
num = 1

Table S1: Visual augmentation parameters.

Augmentation Parameters

Volume Jitter range = ±0.2

Time Mask max size = 20
num = 2

Frequency Mask max size = 10
num = 2

Timewarp wrap window = 20

Random Crop range = [0.6,1.5]
crop scale = [1.0,1.5]

Table S2: Audio augmentation parameters.

here1. Please note that for the Cutout transformation, the
mask is created with the mean value of the first frame in
the sequence.

D.2 Audio Augmentations
We present the parameters used for audio augmentations in
Table S2. We use the Librosa(McFee et al. 2015) library to
generate mel-spectrograms. We use the techniques proposed
in (Park et al. 2019) to perform Time Mask, Frequency
Mask, and Time Warp transformations2. The parameters for
the audio augmentations are set empirically, except for Ran-
dom Crop which we adopt from (Niizumi et al. 2021).

E Evaluation Protocol
To evaluate the representations learned with self-supervised
pretraining, we test the proposed framework in different se-
tups, namely linear evaluation, full finetuning, and retrieval.
The details of the evaluation protocols are mentioned below.

E.1 Linear Evaluation
To perform linear evaluations of the learned representations
on downstream tasks, we extract fixed features (also called
frozen features) using the pretrained backbones. We train a

1https://github.com/uoguelph-mlrg/Cutout
2https://github.com/s3prl/s3prl

MSC HF CJ GS GB C

Pretraining 3 3 3 3 3 3
Full-finetune 3 3 3 3 7 3
Linear evaluation 3 3 3 3 7 3

Table S3: Audio augmentation summary.

VJ Mask RC TW

Pretraining 3 3 3 7
Linear evaluation 3 3 3 3

Table S4: Visual augmentation summary.

linear classifier using the fixed feature representations. The
details are presented below.
Action Recognition.
To perform linear evaluations on action recognition, we fol-
low standard evaluation protocols laid out in prior works
(Alayrac et al. 2020; Recasens et al. 2021; Patrick et al.
2021; Morgado, Vasconcelos, and Misra 2021). The details
are presented below.
HMDB51 and UCF101. We perform linear evaluations in 2
setups, i.e., 8-frame and 32-frame inputs. We evaluate on 8-
frame inputs for the design explorations and 32-frame inputs
for large-scale experiments.

Following the protocols mentioned in (Alayrac et al.
2020; Recasens et al. 2021), we feed 8-frame inputs to the
video backbone, with a spatial resolution of 2242. During
training, we randomly pick 25 clips per sample to extract
augmented representations, while during testing, we uni-
formly select 10 clips per sample and report top-1 accuracy
at sample-level prediction by averaging clip-level predic-
tions. The augmentation techniques are mentioned in Sec-
tion D. We don’t apply the Gaussian Blur while extract-
ing the training features since it deteriorates the perfor-
mance. Moreover, to perform a deterministic evaluation, we
don’t apply any augmentations during validation. The visual
features are extracted from the final convolution layer and
passed to a max-pool layer with a kernel size of (1, 4, 4)
(Morgado, Vasconcelos, and Misra 2021). Finally, we use
the learned visual representations to train a linear SVM clas-
sifier, we sweep the cost values between {0.00001, 0.00005,
0.0001, 0.0005, 0.001, 0.005, 0.01, 1} and report the best
accuracy.

When validating on 32-frame inputs, we could not per-
form SVM as the feature vector is too large to hold in the
memory. Hence, we use a linear fully-connected layer at
the end of the video backbone. Note that during training the
backbone is kept frozen and only the linear layer is trained.
we keep the rest of the setup the same as described earlier,
with the exception of training where we randomly select 10
clips per sample.
Kinetics400. As Kinetics400 (Kay et al. 2017) is a large-
scale dataset, the feature vector is too large to save in mem-
ory. Following (Morgado, Vasconcelos, and Misra 2021), we
use a fully connected layer at the end of the frozen back-

bone and feed 8 × 2242 frame inputs. During training, we
randomly pick 1 clip per sample, while during validation,
we uniformly select 10 clips per sample. Note that the rest
of the setups remain the same, as described for HMDB51
and UCF101. Finally, we obtain the sample-level prediction
by averaging the clip-level predictions and report the top-1
accuracy.
Sound Classification.
In case of evaluating audio representations, we follow the
evaluation protocol laid out in prior works (Morgado, Vas-
concelos, and Misra 2021; Alwassel et al. 2020; Alayrac
et al. 2020; Recasens et al. 2021) for respective datasets. The
details are mentioned below.
ESC50. We perform linear evaluations on ESC50 in 2 se-
tups, we use 2-second audio input for design exploration
and 5-second audio input for large-scale experiments. Fol-
lowing (Patrick et al. 2021), we extract 10 epochs worth of
augmented feature vectors from the training clips. During
testing, when using 2-second inputs, we extract 10 equally
spaced audio segments (Morgado, Vasconcelos, and Misra
2021; Patrick et al. 2021; Alwassel et al. 2020), and when
using 5-second inputs, we extract 1 segment (Alayrac et al.
2020; Recasens et al. 2021) from each sample. We perform
the augmentations mentioned in Section D to extract the
training features. We notice that unlike self-supervised pre-
training, time warping improves the model performance in
the linear evaluation. We do not apply any augmentations
during validation. We extract the representations from the
final convolution layer and pass it through a max-pool layer
with a kernel size of (1, 3) and a stride of (1, 2) (Patrick
et al. 2021). Similar to action recognition, we perform clas-
sification using a one-vs-all linear SVM classifier, we sweep
the cost values between {0.00001, 0.00005, 0.0001, 0.0005,
0.001, 0.005, 0.01, 1} and report the best accuracy.
DCASE. To validate on DCASE, we follow the protocol
mentioned in (Morgado, Vasconcelos, and Misra 2021). We
extract 60 clips per sample and train a linear classifier on the
extracted representations. Note that the augmentation and
feature extraction schemes remain the same as mentioned
for ESC50. We report the top-1 sample level accuracies by
averaging the clip level predictions.
Multi-modal Fusion. To perform a multi-modal linear eval-
uation with late fusion, we extract features from Kinetics-
Sound. During training, we randomly pick 10 audio-visual
clips per sample, each 2 seconds long. Next, we extract fea-
ture vectors of dimension 2048 from the last convolution
layer by using max-pooling with kernel sizes of (1, 2, 2) and
(1, 4) for visual and audio respectively. Following, the fea-
ture vectors are concatenated to train a linear SVM classifier.
Finally, we report the top-1 sample level accuracy for action
classification.

E.2 Full Finetuning
Following earlier works (Alwassel et al. 2020; Morgado,
Vasconcelos, and Misra 2021; Morgado, Misra, and Vas-
concelos 2021; Asano et al. 2020), we use the pretrained
visual backbone along with a newly added fully-connected
layer for full finetuning on UCF101 (Soomro, Zamir, and
Shah 2012) and HMDB51 (Kuehne et al. 2011). We adopt

two setups for full finetuning, 8-frame inputs and 32-frame
inputs. In both cases, we use a spatial resolution of 2242.
Lastly, we replace the final adaptive average-pooling layer
with an adaptive max-pooling layer. We find that applying
strong augmentations improves the model performance in
full-finetuning. Please see the augmentation details in Sec-
tion D. During testing, we extract 10 equally spaced clips
from each sample and do not apply any augmentations. We
report the top-1 accuracy at sample-level prediction by aver-
aging the clip-level predictions. We use an SGD optimizer
with a multi-step learning rate scheduler to finetune the
model. We present the hyperparameters of full-finetuning in
Table S11.

E.3 Retrieval
We follow the protocol laid out in (Patrick et al. 2021; Xu
et al. 2019). We uniformly select 10 clips per sample from
both training and test splits. We fit 2-second inputs to the
backbone to extract representations. We empirically test ad-
ditional steps such as l2-normalization and applying batch-
normalization on the extracted features, and notice that they
do not help the performance. Hence, we simply average the
features extracted from the test split to query the features
of the training split. We compute the cosine distance be-
tween the feature vectors of the test clips (query) and the
representations of all the training clips (neighbors). We con-
sider a correct prediction if k neighboring clips of a query
clip belong to the same class. We calculate accuracies for
k = 1, 5, 20. We use the NearestNeighbors3 API provided
in SciKit-Learn in this experiment.

F Architecture Details
In this study, we use a slightly modified version of R(2+1)D-
18 (Tran et al. 2018) as the video backbone as proposed
in (Morgado, Vasconcelos, and Misra 2021), and ResNet-
18 (He et al. 2016) as the audio backbone. For the sake of
completeness, we present the architecture details in Tables
S5 and S6, respectively. The predictor and projector heads
are made of fully-connected layers following (Chen and He
2021), and their architecture details are presented in Table
S7.

G Hyperparameters and Training Details
In this section, we present the details of the hyperparameters,
computation requirements, as well as additional training de-
tails of self-supervised pretraining and full finetuning.

G.1 Pretraining Details
We present the pretraining hyperparameters of CrissCross in
Table S10. Most of the parameters remain the same across
all 3 datasets, with the exception of a few hyperparameters
such as learning rates and epoch size which are set depend-
ing on the size of the datasets. We train on Kinetics-Sound
with a batch size of 512, on a single node with 4 Nvidia
RTX-6000 GPUs. Next, when training on Kinetics400 and
AudioSet, we use 2 nodes and set the batch size to 2048.

3sklearn.neighbors.NearestNeighbors

Layer Xs Xt C Ks Kt Ss St

frames 112 8 3 - - - -
conv1 56 8 64 7 3 2 1

maxpool 28 8 64 3 1 2 1
block2.1.1 28 8 64 3 3 1 1
block2.1.2 28 8 64 3 3 1 1
block2.2.1 28 8 64 3 3 1 1
block2.2.2 28 8 64 3 3 1 1
block3.1.1 14 4 128 3 3 2 2
block3.1.2 14 4 128 3 3 1 1
block3.2.1 14 4 128 3 3 1 1
block3.2.2 14 4 128 3 3 1 1
block4.1.1 7 2 256 3 3 2 2
block4.1.2 7 2 256 3 3 1 1
block4.2.1 7 2 256 3 3 1 1
block4.2.2 7 2 256 3 3 1 1
block5.1.1 4 1 512 3 3 2 2
block5.1.2 4 1 512 3 3 1 1
block5.2.1 4 1 512 3 3 1 1
block5.2.2 4 1 512 3 3 1 1
avg-pool - - 512 - - - -

Table S5: Architecture of the video backbone: R(2+1)D-18.

Adam (Kingma and Ba 2015) optimizer is used to train
our proposed framework. We use LARC4(You, Gitman, and
Ginsburg 2017) as a wrapper to the Adam optimizer to clip
the gradients while pretraining with a batch size of 2048. In
this work, we stick to batch sizes of 512 and 2048, because
(i) as they show stable performance based on the findings of
(Chen and He 2021); (ii) they fit well with our available GPU
setups. Additionally, we perform mixed-precision training
(Micikevicius et al. 2018) using PyTorch AMP (Paszke et al.
2019) to reduce the computation overhead.

Ablation Parameters. In the ablation study, we keep the
training setup exactly identical across all the variants, with
the exception of the learning rates, which we tune to find the
best performance for that particular variant. For example,
we set the base learning rate for Lv1v2 and La1a2models as
0.0001 and 0.00001 respectively. Next, the predictor learn-
ing rates are set to 0.001 and 0.0001 for the Lv1v2 and La1a2

variants.

G.2 Full Finetuning Details
The full fine-tuning hyperparameters for both benchmarks
are presented in Table S11. We use a batch size of 32 for
the 32-frame input and 64 for the 8-frame input. We use an
SGD optimizer with a multi-step learning rate scheduler to
finetune the video backbones. Please note that we perform
the full finetuning on a single Nvidia RTX-6000 GPU.

H Limitations.
The notion of asynchronous cross-modal optimization has
not been explored beyond audio-visual modalities. For ex-
ample, our model can be expanded to consider more than

4https://github.com/NVIDIA/apex/blob/master/apex/parallel/
LARC.py

Layer Xf Xt C Ks Kt Sf St

spectrogram 80 200 1 - - - -
conv1 40 100 64 7 7 2 2

maxpool 20 50 64 3 3 2 2
block2.1.1 20 50 64 3 3 2 2
block2.1.2 20 50 64 3 3 2 2
block2.2.1 20 50 64 3 3 2 2
block2.2.2 20 50 64 3 3 2 2
block3.1.1 10 25 128 3 3 2 2
block3.1.2 10 25 128 3 3 2 2
block3.2.1 10 25 128 3 3 2 2
block3.2.2 10 25 128 3 3 2 2
block4.1.1 5 13 256 3 3 2 2
block4.1.2 5 13 256 3 3 2 2
block4.2.1 5 13 256 3 3 2 2
block4.2.2 5 13 256 3 3 2 2
block5.1.1 3 7 512 3 3 2 2
block5.1.2 3 7 512 3 3 2 2
block5.2.1 3 7 512 3 3 2 2
block5.2.2 3 7 512 3 3 2 2
avg-pool - - 512 - - - -

Table S6: Architecture of the audio backbone: ResNet-18.

Layer Dimensions

input 512
fc-bn-relu 2048
fc-bn-relu 2048

fc-bn 2048

Table S7: Architecture of projector heads.

Layer Dimensions

input 2048
fc-bn-relu 512

fc 2048

Table S8: Architecture of predictor heads.

2 modalities (e.g., audio, visual, and text), which are yet
to be studied. Additionally, we notice a considerable per-
formance gap between full-supervision and self-supervision
when both methods are pretrained with the same large-scale
dataset (Kinetics400 or AudioSet), showing room for further
improvement.

I Broader Impact.

Better self-supervised audio-visual learning can be used for
detection of harmful contents on the Internet. Additionally,
such methods can be used to develop better multimedia sys-
tems. Lastly, the notion that relaxed cross-modal temporal
synchronicity is useful, can challenge our existing/standard
approaches in learning multi-modal representations and re-
sult in new directions of inquiry. The authors don’t foresee
any major negative impacts.

Abbreviations Name Description

bs batch size The size of a mini-batch.

es epoch size The total number of samples per epoch.

ep toal epochs The total number of epochs.

lr
lrab
lrvb
lrap
lrvp

learning rate
audio backbone lr
video backbone lr
audio predictor lr
video predictor lr

The learning rates to train the networks.

lrs learning rate scheduler The learning rate scheduler to train the network.

ms milestones At every ms epoch the learning rate is decayed.

γ lr decay rate The learning rate is decayed by a factor of γ.

wd weight decay The weight decay used in the SGD optimizer.

mtm momentum The momentum used in the SGD optimizer.

drp dropout The dropout rate.

Table S9: Abbreviations and descriptions of the hyperparameters.

dataset bs es ep optim lrs lrvb(start/end) lrab(start/end) lrvp lrap wd betas

KS 512 220K 100 Adam Cosine 0.0002/0 0.0002/0 0.002 0.002 0.0001 0.9, 0.999
K400 2048 1M 100 Adam∗ Cosine 0.0002/0.0001 0.0002/0.0001 0.002 0.002 0.0001 0.9, 0.999
AS 2048 3.5M 100 Adam∗ Cosine 0.0001/0 0.0001/0 0.001 0.001 0.0001 0.9, 0.999

Table S10: Pretext training parameters. Note the abbreviations used below, KS: Kinetics-Sound, K400: Kinetics400, AS: Au-
dioSet, Adam∗: Adam with LARC

dataset input es bs ep ms optim lrs lr γ wd mtm drp

UCF101 8×2242 95K 64 20 6/10/14 SGD multi-step 0.0005 0.3 0.0 0.9 0.0
UCF101 32×2242 95K 32 20 8/12/16 SGD multi-step 0.00007 0.3 0.0 0.9 0.0
HMDB51 8×2242 35K 64 20 6/10/14 SGD multi-step 0.0005 0.1 0.0 0.9 0.0
HMDB51 32×2242 35K 32 20 8/12/16 SGD multi-step 0.0001 0.3 0.0 0.9 0.0

Table S11: Full-finetuning hyperparameters for action recognition when pretrained on Kinetics400.

Acknowledgments We are grateful to the Bank of Mon-
treal and Mitacs for funding this research. We are thankful
to SciNet HPC Consortium for helping with the computation
resources.

References
Alayrac, J.-B.; Recasens, A.; Schneider, R.; Arandjelovic,
R.; Ramapuram, J.; De Fauw, J.; Smaira, L.; Dieleman, S.;
and Zisserman, A. 2020. Self-Supervised MultiModal Ver-
satile Networks. NeurIPS, 2(6): 7.
Alwassel, H.; Mahajan, D.; Korbar, B.; Torresani, L.;
Ghanem, B.; and Tran, D. 2020. Self-Supervised Learning
by Cross-Modal Audio-Video Clustering. NeruIPS, 33.
Arandjelovic, R.; and Zisserman, A. 2017. Look, listen and
learn. In ICCV, 609–617.
Asano, Y. M.; Patrick, M.; Rupprecht, C.; and Vedaldi, A.

2020. Labelling unlabelled videos from scratch with multi-
modal self-supervision. In NeurIPS.

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In ICML, 1597–1607.

Chen, X.; and He, K. 2021. Exploring simple siamese rep-
resentation learning. In CVPR, 15750–15758.

Gemmeke, J. F.; Ellis, D. P.; Freedman, D.; Jansen, A.;
Lawrence, W.; Moore, R. C.; Plakal, M.; and Ritter, M.
2017. Audio set: An ontology and human-labeled dataset
for audio events. In ICASSP, 776–780.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.

Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.;
Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev,

P.; et al. 2017. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In ICLR.
Korbar, B.; Tran, D.; and Torresani, L. 2018. Cooperative
learning of audio and video models from self-supervised
synchronization. In NeruIPS, 7774–7785.
Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; and Serre,
T. 2011. HMDB: a large video database for human motion
recognition. In ICCV, 2556–2563.
McFee, B.; Raffel, C.; Liang, D.; Ellis, D. P.; McVicar, M.;
Battenberg, E.; and Nieto, O. 2015. librosa: Audio and mu-
sic signal analysis in python. In Python in Science Confer-
ence, volume 8, 18–25.
Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen,
E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.;
Venkatesh, G.; et al. 2018. Mixed Precision Training. In
ICLR.
Morgado, P.; Misra, I.; and Vasconcelos, N. 2021. Robust
Audio-Visual Instance Discrimination. In CVPR, 12934–
12945.
Morgado, P.; Vasconcelos, N.; and Misra, I. 2021. Audio-
visual instance discrimination with cross-modal agreement.
In CVPR, 12475–12486.
Niizumi, D.; Takeuchi, D.; Ohishi, Y.; Harada, N.; and
Kashino, K. 2021. BYOL for Audio: Self-Supervised
Learning for General-Purpose Audio Representation. arXiv
preprint arXiv:2103.06695.
Park, D. S.; Chan, W.; Zhang, Y.; Chiu, C.-C.; Zoph, B.;
Cubuk, E. D.; and Le, Q. V. 2019. Specaugment: A simple
data augmentation method for automatic speech recognition.
arXiv preprint arXiv:1904.08779.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. NeurIPS, 32: 8026–8037.
Patrick, M.; Asano, Y. M.; Kuznetsova, P.; Fong, R.; Hen-
riques, J. F.; Zweig, G.; and Vedaldi, A. 2021. On composi-
tions of transformations in contrastive self-supervised learn-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 9577–9587.
Piczak, K. J. 2015. ESC: Dataset for Environmental Sound
Classification. In ACM Conference on Multimedia, 1015–
1018. .
Recasens, A.; Luc, P.; Alayrac, J.-B.; Wang, L.; Strub,
F.; Tallec, C.; Malinowski, M.; Patraucean, V.; Altché,
F.; Valko, M.; et al. 2021. Broaden Your Views
for Self-Supervised Video Learning. arXiv preprint
arXiv:2103.16559.
Soomro, K.; Zamir, A. R.; and Shah, M. 2012. UCF101:
A dataset of 101 human actions classes from videos in the
wild. arXiv preprint arXiv:1212.0402.
Stowell, D.; Giannoulis, D.; Benetos, E.; Lagrange, M.; and
Plumbley, M. D. 2015. Detection and classification of acous-
tic scenes and events. IEEE Transactions on Multimedia,
17(10): 1733–1746.

Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; and
Paluri, M. 2018. A closer look at spatiotemporal convolu-
tions for action recognition. In CVPR, 6450–6459.
Xu, D.; Xiao, J.; Zhao, Z.; Shao, J.; Xie, D.; and Zhuang,
Y. 2019. Self-supervised spatiotemporal learning via video
clip order prediction. In CVPR, 10334–10343.
You, Y.; Gitman, I.; and Ginsburg, B. 2017. Large
batch training of convolutional networks. arXiv preprint
arXiv:1708.03888.

